atty of Engineering
Mechanical Power Eng. Dept.

Computer Application 2nd year Time :3 hr

Attempt to solve all Questions and write a flow chart for all program

Question (1)

[15]

1-a)Write a computer program to get the area under the curve using trapezoidal rule $P=0.22 \text{ V}^2$ - 0.4 v^4 +3 From v=1 to v=2 with step equal 0.1 where

$$w = \int_{1}^{2} p dv$$

1-b) write a computer program to solve the equation $aX^2+bX+c=0$

At a=4, b=5, c=-4

Question (2)

[10]

2-a) write a computer program to calculate the root of the following non-linear equation using Newton - Raphson method (X-0.2sinX-0.5X³=5) using the first gauss X=0.1 and the error equal 0.0001

2-b) write a computer program to calculate the root of the following non-linear equation using Bi-section method (Xe^{X} -0.2tanX-0.5 X^{3} =15) using the first gauss X=0.1 and X=1.5 and the error equal 0.0001

Question (3)

[10]

Write a computer program to calculate the arithmetic mean value of X if the input data are $x_1, x_2, x_3, \ldots, x_{n-1}, x_n$ if n is equal 100 and then write subroutine to calculate the standard deviation SD where the arithmetic mean value of X equal the sum of all data divided to total number of data

Question (4)

[15]

Write a computer program to determine a root of cubic equation $AX^3+BX^2+CX+D=0.0$

Question (5)

[10]

Write a computer program to get root of the surface configuration of the NACA 0012 airfoil of Length 1m and maximum thickness of 0.2m is given by:

$$Y(x)=\pm[0.2969\sqrt{x}-0.126x-0.3516x^2+0.2843x^3-0.1015x^4]$$

Where plus and minus signs refer to upper and lower surface respectively. Determine x where the thickness of airfoil is 0.1m by using the bisection method . Set tolerance to 0.00001. (There are two solutions).

Good Luck M. G. Mousa